B.Sc. DEGREE EXAMINATION - **MATHEMATICS**

FIFTH SEMESTER - NOVEMBER 2015

MT 3500 ALGEBRAIC STRUCTURE - II

Date: 25/09/2015	Dept. No.	Max. : 100 Marks

Time: 09:00-12:00

PART A

ANSWERALL THE QUESTIONS

(10*2=20 marks)

- 1. Define a vector space over a field F.
- 2. Show that the vectors (1,1) and (-3,2) in \mathbb{R}^2 are linearly independent over \mathbb{R} , the field of real numbers.
- 3. Define a basis of a vector space.
- 4. Verify that $T: \mathbb{R}^2 \to \mathbb{R}$ defined by T(a,b) = ab for all $a,b \in \mathbb{R}$ is a vector space homomorphism.
- 5. Let R^3 be the inner product over R under standard inner product. Find the norm of (3,0,4).
- 6. Define eigen value of linear transformation of T.
- 7. Define a symmetric matrix and give an example.
- 8. Define trace of a matrix and give an example.
- 9. Find the rank of the matrix $A = \begin{pmatrix} 1 & 5 & -7 \\ 2 & 3 & 1 \end{pmatrix}$ over the field of rational numbers.
- 10. If $T \in A(V)$ and \blacksquare then prove that

PART B

ANSWERANY FIVE QUESTIONS

(5 * 8 = 40 marks)

11. If V is a vector space over F then show that

- 12. Show that a nonempty subset W of a vector space V over F is a subspace of V if and only if $aw_1 + bw_2 \in W$ for all $a, b \in F, w_1, w_2 \in W$.
- 13. Let V be a vector space and suppose that one basis has n elements and another basis has m elements .Then prove that m = n.
- 14. If V and W are two n-dimensional vector spaces over F. Then prove that any isomorphism T of V onto W maps a basis of V onto a basis of W.
- 15. State and prove Schwarz inequality.
- 16. Show that any square matrix *A* can be expressed uniquely as the sum of a symmetric matrix and a skew-symmetric matrix.
- 17. For what values of λ the system of equations $x_1 + x_2 + x_3 = 1, x_1 + 2x_2 + 4x_3 = \lambda, x_1 + 4x_2 + 10x_3 = \lambda^2$ over the rational field is consistent?
- 18. a) If $T \in A(V)$ is skew-Hermitian, prove that all of its eigenvalues are pure imaginaries.
- b)Prove that the eigenvalues of a unitary transformation are all of absolute value 1.

PART C

ANSWER ANY TWO QUESTIONS

(2 * 20 = 40 marks)

- 19. a) Prove that the vector space V over F is a direct sum of two of its subspaces W_1 and W_2 if and only if $V = W_1 + W_2$ and $W_1 \cap W_2 = \{0\}$.
- 1. If S and T are subsets of a vector space V over F, then prove that

$$L(S \cup T) = L(S) + L(T)$$
.

- 2. If W_1 and W_1 are subspaces of a finite dimensional vector space V, prove that $\dim(W_1 + W_2) = \dim W_1 + \dim W_2 \dim(W_1 \cap W_2)$.
- 3. State and prove Gram-Schmidt orthonormalization process.
- 4. a) Let V be a vector space of dimension n over F, and let $T \in A(V)$. If $m_1(T)$ and $m_2(T)$ are the matrices of T relative to two bases $\{v_1, ... v_n\}$ and $\{w_1, ... w_n\}$ of V, respectively. Then prove that there is an invertible matrix C in F_n such that $m_2(T) = Cm_1(T)C^{-1}$.
- b) Prove that the linear transformation T on V is unitary if and only if it takes an orthonormal basis of V onto an orthonormal basis of V.
